Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process
نویسندگان
چکیده
BACKGROUND In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100-180 mg/L), pH (3-11), time (10-30 min) and initial total organic carbon (TOC) concentration (4-10 mg/L) were studied. RESULTS Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R(2) = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. CONCLUSIONS This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process.
منابع مشابه
Application of response surface methodology to optimize the ultraviolet/hydrogen peroxide process for the removal of Reactive Red 195 dye from aqueous solution
Background and Objective: The most used dyes in textile industries are Azo Group dyes. Azo dyes have complex aromatic compounds, low chemical and biodegradable stability. Due to these properties, treatment of this type of wastewater by conventional methods will not meet environmental standards. The advanced oxidation process has been widely used to treat organic matter from wastewater. In this ...
متن کاملOptimization and kinetic evaluation of acid blue 193 degradation by UV/peroxydisulfate oxidation using response surface methodology
The optimization of process conditions for the degradation of Acid Blue 193 by UV/peroxydisulfate was investigated using response surface methodology (RSM). The effects of four parameters namely initial K2S2O8 concentration, UV irradiation, temperature, and initial dye concentration on two process responses, color removal and the rate constants of the first-order kinetic equations, were investi...
متن کاملبهینه سازی فرایند UV/H2O2/TiO2 در تصفیه تکمیلی پساب بیمارستانی
Background and Objective: Treatment of hospital wastewaters has an important role in reducing the discharge of organics and pharmaceutical compounds into aquatic environments. Nowadays, advanced oxidation processes were extensively used for the removal of organic compounds from treated effluents. The study aimed to examine organic compounds removal from real treated effluent of a hospital treat...
متن کاملPhotocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution
Background & Aim: Excessive consumption of antibiotics and their incomplete metabolization in human and animals, as well as inadequate removal by conventional waste water system leads to the release of these chemicals into the environment. Antibiotics have adverse effects including bacterial resistance, digestive disorders and genotoxic. Therefore the aim of this study was to survey amoxicillin...
متن کاملDetermination of Effective Parameters on Removal of Organic Materials from Pharmaceutical Industry Wastewater by Advanced Oxidation Process (H2O2/UV)
Background & Aims of the Study: Pharmaceutical wastewater is one of the major complex and toxic industrial effluents that contain little or no biodegradable organic matters. Materials & Methods: In this study, H2O2/UV base advance oxidation process (AOP) was used to remove organic materials from pharmaceutical industry effluent. Experiments were conducted for the chemical...
متن کامل